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Abstract

In Part II of this paper the analysis is extended to include both conduction and non!zero net mass ~ow[ We are able
to distinguish between low and high enthalpy two!phase reservoirs\ where the former must terminate in single!phase
liquid conditions at depth\ while the latter may end in single!phase liquid "for low permeabilities#\ single!phase vapour
"for intermediate permeabilities#\ or can be unstable when extended "for high permeabilities#[ If\ and only if\ both
conduction and net mass ~ow are non!zero a class of models can be identi_ed with the property that a permeability
increase "downwards# is associated with a liquid saturation decrease[ This provides a prototype for a vapour!dominated
geothermal reservoir[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

In Part I of this paper ð0Ł we used the ~owplane dia!
gram method to study some special cases of one!dimen!
sional steady!state two!phase geothermal ~ows[ The
method can be used to construct idealized models of
heterogeneous two!phase geothermal reservoirs in the
natural state[ In particular\ we isolated the in~uences of
conduction and net mass ~ow in examples of "a# the
heatpipe "zero net mass ~ow#\ and "b# purely convective
~ow "zero conduction#[

In Part II we continue the analysis by extending the
~owplane diagram to the general case where there is both
non!zero net mass ~ow and conduction[ The signatures
of the individual physical mechanisms "conduction\ net
mass ~ow# can still be identi_ed in the diagram\ but we
shall show that there is an important additional e}ect
which occurs when they interact[ As in ð0Ł the classi!
_cation process is essentially geometrical\ and we are
usually able to establish a close connection between the
geometry and the physics[ The major structures are the
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pressure trajectories which represent the pressure and
saturation pro_les in a homogeneous vertical two!phase
column\ and the pressure contours which can be used to
track the ~ow through permeability contrasts[

Vapour!dominated reservoirs[ This study also has rel!
evance to a particular di.culty referred to in the con!
clusion to ð0Ł ] in all cases studied the ~owplane geometry
was such that a permeability increase "downwards# was
necessarily accompanied by a rise in liquid content[ This
result is in con~ict with a commonly held view "see for
example ð1\ 2Ł# that vapour!dominated conditions
develop in the natural state of some geothermal reservoirs
due to the presence of a low permeability structure "the
caprock# separating the geothermal aquifer from the
groundwater aquifer[ According to this hypothesis
"described by Straus and Schubert in ð2Ł# the sudden
permeability increase across the caprock:geothermal!
aquifer boundary induces vapour!dominated conditions
in the aquifer[ In contrast\ the theory developed in ð0Ł
predicts that the saturation change at such a boundary
would be in the opposite direction\ generally leading to
liquid!dominated conditions within the aquifer[ However
the numerical simulation experiments of Ingebritsen and
Sorey ð3Ł demonstrate that the caprock hypothesis is well!
founded\ and that vapour!dominated reservoirs do in
fact develop under these conditions[ Furthermore\ the
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existence of vapour!dominated geothermal reservoirs
"The Geysers\ Yellowstone National Park ^ Kawah
Kamojang\ Indonesia\ etc[# is an established fact[ The
problem then is to reconcile the theoretical predictions
of the one!dimensional model with numerical experiment
and observation[

One possible explanation for the apparent failure of
the one!dimensional theory to predict the existence of
vapour!dominated "VD# reservoirs is that VD reservoirs
are genuinely multi!dimensional phenomena\ just like
convection cells in single!phase reservoirs[ This hypoth!
esis gains plausibility from some recent work ð4\ 5Ł which
shows that the one!dimensional steady!state VD res!
ervoir model of Kawah Kamojang proposed by Straus
and Schubert in ð2Ł is\ in fact\ unstable[ Furthermore\
Ingebritsen and Sorey|s simulation of a VD reservoir was
two!dimensional[

Although there may be some merit in the multi!dimen!
sional hypothesis\ we shall show in this paper that there
is a simple alternative model of a VD reservoir which is
both one!dimensional and stable[ It can be explained in
terms of the general ~owplane diagram described below[

Assumptions[ The restrictions on the model discussed
in ð0Ł are again made here "we assume the reader|s fam!
iliarity with this paper#\ namely we are concerned with
steady!state one!dimensional porous media ~ow con!
taining a two!phase steam:water leg[ A normalization
condition is imposed on the relative permeability func!
tions ð0Ł[ Capillarity is not explicitly included in our for!
mulation\ but the macroscopic e}ects of capillarity are
fully!accounted for in the ~owplane diagram ð0Ł[ Steady!
state ~ow is maintained by means of geothermal bound!
ary conditions\ by which is meant the imposition of a
Dirichlet boundary condition at ground surface "pre!
scribed pressure and temperature# and a Neumann\ or
~ow\ boundary condition at depth "_xed mass and energy
~ows#[

Plan of this paper[ We preface the main body of the
paper with an example of a simulated one!dimensional
steady!state ~ow[ Computed saturation!depth pro_les
are presented for a reservoir containing a single _xed!
magnitude permeability discontinuity[ In the next section
the major features of the general ~owplane diagram are
summarized\ and a geometrical classi_cation is intro!
duced which distinguishes between certain physically
di}erent reservoir models[ The case of a high enthalpy
reservoir is discussed[ The ~owplane method is then
applied to the simulation example of the previous section[
Finally we describe a prototype one!dimensional model
for a vapour!dominated geothermal reservoir[ Some
results from a two!dimensional simulation of a VD res!
ervoir ð3Ł are compared with the proposed one!dimen!
sional model[

Notation[ We shall freely refer to sections\ equations\
_gures and tables in Part I of this paper ð0Ł[ We shall
distinguish these references with a superscript �[ Thus\
equation "4�# refers to equation "4# of ð0Ł\ etc[

1[ Saturation pro_les with a permeability discontinuity

A rapid permeability change may be approximated as
a permeability discontinuity[ The presence of a per!
meability contrast will change the geothermal steady
state\ and in two!phase conditions a permeability dis!
continuity will be accompanied by a step change in satu!
ration[ We present some results from a numerical simu!
lation of one!dimensional ~ow[

Figure 0 shows a sequence of steady!state "liquid# satu!
ration pro_les for a model containing a permeability dis!
continuity "dotted line#[ In the _gure gravity acts to the
right and the horizontal dashed lines are the residual
saturations[ All the examples have the same steady!state
mass and energy ~ows "JM � −09−5 kg s−0 m−1\
JE � −1[8 W m−1#\ the same constant conductivity
"K � 3 W m−0 K−0# and the same permeability contrast
between high "H# "k � 3 md � 3×09−04 m1# and low "L#
"k � 9[93 md � 3×09−06 m1# permeabilities[ These mass
and energy ~ows "and conductivity# are similar to values
chosen in ð2Ł to model the Kawah Kamojang reservoir[
The upper surface boundary condition "the same in all
cases# is P9 � 094 Pa and T9 � 04>C[ The distinguishing
feature in the various cases is thus the location of the
permeability discontinuity[

Figure 0 is based on numerical results using the
TOUGH1 geothermal simulator ð6Ł[ A vertical section of
depth 0199 m within a geothermal reservoir has been
approximated as a one!dimensional column[ Starting
from an initial single!phase state of constant pressure and
temperature the boundary conditions are applied at top
"P � P9\ T � T9# and bottom "JM\ JE#\ and the system is
run to steady!state[ In all cases a phase boundary appears\
separating an upper single!phase liquid zone from an
underlying two!phase region[ The location of this inter!
face is determined by the upper boundary condition ð7Ł
and the permeability distribution ^ note that it is generally
not coincident with the permeability discontinuity[ The
saturation jump at the interface consists of two parts ] a
jump through the immobile steam saturations which are
always excluded in the steady!state ð8Ł ^ and an additional
jump to a saturation for which both phases are mobile[
Piecewise linear relative permeability functions have been
employed in the simulation with residual saturations
Srw � 9[0 �Srs ^ but note that all the results in this paper
are independent of the choice of relative permeability
function satisfying the normality condition\ equation
"0�#[ As a partial check on some results the simulations
have been run both without and with capillarity "using
Leverett|s J!function#[ The results are essentially ident!
ical[ This con_rms that our formulation of the steady!
state problem represents the macroscopic e}ects of capil!
larity correctly[

In Fig[ 0"i# the permeability discontinuity is high up in
the single!phase liquid region[ A liquid!dominated two!
phase zone develops beneath the phase boundary with
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Fig[ 0[ SaturationÐdepth pro_les for a 0199 m vertical column "gravity acts to the right# containing a permeability discontinuity "denoted by the vertical dotted line# at various depths[
The discontinuity separates low "L# and high "H# permeabilities[ The dashed horizontal lines are the residual saturations[ Numbers near the bottom of each diagram are the pressures
"in bars# at the indicated depths[ Symbols in parentheses refer to Fig[ 1"iii#[
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the saturation gradually decreasing with depth[ In Fig[
0"ii# the discontinuity occurs below the phase boundary ]
the two!phase zone is initially vapour!dominated with
gradually decreasing liquid saturation as far as the dis!
continuity\ then a saturation jump to liquid!dominated
conditions occurs followed by a second gradual decrease
as in "i#[ In Fig[ 0"iii# the permeability discontinuity is
only 199 m below that in the previous example\ but the
second saturation discontinuity is now in the opposite
direction[ Below the permeability!controlled saturation
discontinuity is a region of single!phase vapour[ Case
"iv# is similar to Case "iii# except that the permeability
discontinuity is now below the two!phase region[ Thus\
the second saturation discontinuity is no longer de_ned
by the permeability contrast\ instead the two!phase zone
is terminated when the saturation reaches the liquid
residual value[

Some features of Fig[ 0 have already been encountered
in Part 0 of this paper ð0Ł[ The upper phase transition in
all cases may be identi_ed as type "WT# "see Table 0�#\
and\ since the saturation wavespeed C ³ 9\ this is a jump
transition\ from S � 0 "single!phase liquid# to some value
S ³ S� where Srs � 0−S� is the vapour!residual value[
This is observed in Fig[ 0 ] note the magnitude of the
jump S�−S is much greater in the low permeability cases[
Secondly\ Table 0� predicts that the transition at the
lower phase boundary of type "TS# or "TW# must be
smooth from two!phase to single!phase[ When immobile
liquid or vapour is present this is interpreted to mean
that the saturation must tend smoothly towards the
appropriate residual value[ This is observed in Fig[ 0"iv#[
In Figs 0"i# and "ii# the two!phase zone does not terminate
so the issue is undecided[ Figure 0"ii# shows an example
of a permeability!controlled saturation jump ] a per!
meability increase "downwards# is associated with a
liquid saturation increase\ similar to Fig[ 2�"ii# in ð0Ł[

In spite of the agreement of some aspects of Fig[ 0 with
previous results "0#\ the third diagram Fig[ 0"iii# is quite
anomalous[ The permeability!controlled saturation jump
in "iii# is the opposite direction to that of "ii#\ even though
the permeability discontinuities are only 199 m apart[ In
"ii# a permeability increase induces a saturation increase\
but in "iii# just the opposite happens[ These points will be
re!examined later in this paper[ At this stage we remark
that caprock hypothesis ð2Ł on vapour!dominated res!
ervoirs seems to be supported by Fig[ 0"iii#\ but not by
Fig[ 0"ii#[

2[ The ~owplane diagram ] the general case

Description[ The ~owplane diagram is a simple and
informative technique for representing the major features
of one!dimensional two!phase ~ow in a heterogeneous
formation[ Physical mechanisms such as conduction and
net mass through~ow have a particular geometrical sig!

nature in the ~owplane[ The saturation associated with a
given ~owstate is obtained by means of a simple geo!
metric construction[ The ~owplane diagram is discussed
fully in references ð0\ 5\ 09Ł[ In particular we assume the
reader is familiar with the presentation given in Part I of
this paper ð0Ł[

Permeability contrasts[ The zero net mass ~ow and
no!conduction examples presented in ð0Ł all have one
characteristic in common ] the ~owplane pressure con!
tours are straight lines passing through the ~owplane
origin "in both cases the interaction term i is zero#[ With!
out exception this implies that a positive permeability
contrast "permeability increase with depth# induces an
increase in liquid saturation[

Now although this result seems intuitively reasonable\
it con~icts with the caprock hypothesis proposed by
Straus and Schubert ð2Ł for vapour!dominated reservoirs[
According to this hypothesis vapour!dominated con!
ditions are _rst established in a zone of low permeability
L "{cap rock|# ^ vapour!dominated conditions are then
also propagated "somehow# to the high permeability
aquifer H which underlies L[ Ingebritsen and Sorey ð3Ł
gave some plausibility to the Straus:Schubert proposal
by constructing a two!dimensional simulation model of
a reservoir bounded by a low permeability aureole[ They
found in their examples that vapour!dominated con!
ditions developed in the reservoir provided the caprock
permeability was su.ciently small and the reservoir per!
meability was su.ciently large[

However\ according to the theorem established in ð0Ł\
a permeability increase "downward# will tend to augment
the liquid saturation\ and if the increase is of the order
of one or two magnitudes then vapour!dominated con!
ditions in the caprock will be replaced by liquid!domi!
nated conditions in the aquifer[ This is precisely the situ!
ation demonstrated in Fig[ 0"ii#[

In this section we will resolve the apparent contra!
diction[ We will show that conduction is the missing
ingredient in the specimen examples considered so far
"or\ more precisely\ the non!zero product of conductivity
with the net mass ~ow#\ and that the ~owplane diagram
gives a convincing explanation of its vital role in the
formation of vapour!dominated geothermal reservoirs[
The general form of the ~owplane diagram exhibits all
the complexities of the various special cases\ as well as
additional complications[ We shall not attempt to give a
comprehensive description of the general case\ but rather
concentrate on the salient features[

2[0[ Classi_cation

We now use the geometrical properties of the ~owplane
trajectories as a basis for the classi_cation of one!dimen!
sional steady!state two!phase ~ows[ It turns out that the
thermodynamics of the ~uid at the critical point enters
heavily into this classi_cation[ However it should be
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emphasized that this does not mean that the actual ~uid
state need be anywhere near critical[ In fact\ by de_nition\
two!phase states are always below critical[

Following the method in ð0Ł we begin by examining the
behaviour of the ~owplane trajectories as the pressure
approaches the critical value "Pc � 110[1 bars#[ It follows
from equation "8�# that as P : Pc the pressure tra!
jectories approach in_nity in the quadrants Q1 or Q3

according as

"JE−hcJM¦gcrc`#"k−kws# × 9cQ1 "0a#

³ 9cQ3 "0b#

where ` is the acceleration due to gravity\ k is
permeability\ and h\ r\ n are symbols for enthalpy\ density
and kinematic viscosity[ In two!phase conditions these
quantities are indexed with "w# or "s# to denote the liquid
or vapour phase\ respectively ^ and note that at the critical
point "c# the phases become identical[ We have also
g � K"dTsat:dP# and kws is the watershed {permeability|

kws �
JMncgc

JE−hcJM¦gcrc`

�
9[34955×KJM

JE−1[0963×095×JM¦9[90031×K
×09−01 m1 "1#

using SI units[ Assuming JM ³ 9 we can distinguish two
cases for the steady!state enthalpy h 0 =JE:JM= ] if

h ³ hc−gcrc`:"−JM#\ kws ³ 9 "2a#

then all trajectories must leave C− through the liquid
boundary Bw\ Case "0a#[ This corresponds to the low
enthalpy class "12�a# for no conduction[ However if

h × hc−gcrcg:"−JM#\ kws × 9 "2b#

then either Case "0a# or "0b# may hold[ This corresponds
to the intermediate:high enthalpy class "12�b# and "12�c#[

When kws × 9 we can make the further classi_cation
"see Fig[ 0�# ]

"0# If k ³ kws then the trajectories must exit the physical
region C− of the ~owplane through the liquid bound!
ary Bw[ The terminal state of these trajectories is
single!phase liquid[

"1# If k × kws then the trajectories leave C− either
"a# through the vapour boundary Bs\ in which case

the terminal state is single!phase vapour ^ or
"b# through the stability boundary G[ By analogy

with the arguments presented in ð0Ł we expect
these trajectories to be conditionally stable when
extended ] when stable there is a jump to single!
phase vapour at G[ Stability here refers to the
stability of the time!dependent equations "see ð0Ł#
when subject to a perturbation from the steady!
state[ Conditional stability means that the system
may be numerically stable for some perturbations

but not for others[ Typically numerical instability
has a cyclic character\ with an amplitude which
is dependent on the perturbation ð0Ł[
The two cases may be distinguished by computing\
as before ð0Ł\ the permeability label for the
pressure trajectory which passes through the dry
point S"9\ −0#

k �
JMnsg

JE−hsJM¦rs`g
� ksb "3a#

−0 �
ns

k`DhDr
ðJE−hwJM¦rw`gŁ−

nwnsJMg

k1`DhDr
[

"3b#

Equation "3a# is an expression for vapour bound!
ary permeability ksb "P ^ JE\ JM\ K# in terms of
pressure\ which is substituted into "3b# to give
the dry!point pressure Pd"JM\ JE\ K# and then the
drypoint permeability kd"JM\ JE\ K#[ For small
permeabilities k ³ kd Case "1a# follows "stable\
single!phase vapour#\ while for large per!
meabilities k × kd Case "1b# is implied "con!
ditionally stable#[

2[1[ A hi`h enthalpy reservoir

Figure 1"i# shows the ~owplane pressure trajectories
for the reservoir parameters JM � −09−5 kgs−0 m−1\
JE � −1[8 W m−1\ and K � 3 W m−0 K−0[ Here
h � =JE:JM= satis_es "2b#[ These are the same parameters
used in the simulation example presented earlier "Fig[ 0#[
They are similar to values used by Straus and Schubert
ð2Ł in their model of the vapour!dominated Kawah
Kamojang geothermal system[

In Fig[ 1"i# the trajectories are of two types\ cor!
responding to permeabilities less than\ or greater than\
the watershed permeability\ which in this case is com!
puted from equation "1# to be kws � 9[991045 md[ The
trajectories should be compared with the corresponding
curves for purely convective ~ow\ Figs 3�"i# and "ii#[ The
high pressure end of the trajectories in Fig[ 1"i# k ³ kws

"k × kws# is qualitatively similar to the non!conductive
cases "Figs[ 3�"i# and "ii##\ while the e}ect of conduction
is apparent at the low pressure:temperature end ] Fig[ 1"i#
may be derived "qualitatively# from Figs 3�"i# and "ii# by
bending the low pressure end of the trajectories up and
around until they meet the w!axis[ Fig[ 1"i# bears the same
relationship to Figs 3�"i# and "ii# as does the conductive
heatpipe "Fig[ 1�"ii## to the purely convective one "Fig[
1�"i##[

For low permeabilities in Fig[ 1"i# there is a cut!o}
value kmin "determined from the solution of
s"P\ k# � 9 � 1s:1P# below which "k ³ kmin# there can be
no two!phase zone\ and for permeabilities near to "but
greater than# kmin conditions are entirely liquid!domi!
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Fig[ 1[ Flowplane diagrams for the high enthalpy example "JM � −09−5 kg s−0 m−1\ JE � −1[8 W m−1\ and K � 3 W m−0 K−0#[ "i# Pressure trajectories "solid lines# labelled in
millidarcies[ Pressures increase in the direction of the arrows[ The thick solid line is the pressure trajectory for the watershed permeability\ equation "1#[ The dotted line is the P � 014
bar pressure contour[ "ii# An enlargement of part of Fig[ 1"i# showing pressure trajectories "solid lines# labelled in millidarcies\ and pressure contours "dotted lines# labelled in bars[
"iii# An enlargement of part of Fig[ 1"ii#[ Bracketed symbols are explained in the text[ "iv# Saturation:permeability curves at pressures of 49\ 099\ and 014 bars[ k9"P# is the permeability
corresponding to the minimum saturation on each curve ^ "9# [ [ [ "v# on the P � 014 bar curve are referred to in the text\ and correspond to points in Figs 1"i#Ð"iii# ^ G and Bs correspond
to parts of the ~owplane boundary[
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nated[ This is a conductive e}ect "it cannot occur for
purely convective ~ow#[

Figures 1"ii# and "iii# show magni_ed portions of Fig[
1"i# nearer the ~owplane origin[ The pressure trajectories
"solid lines# leave C− either through the vapour boundary
Bs or the stability boundary G[ For this example the
drypoint permeability is computed form equation "2# to
be kd � 9[9425 md "and drypoint pressure Pd � 097[87
bars#[ For k × kd the two phase zone terminates at the
liquid residual saturation ^ below this is single!phase
vapour[ For k ³ kd the model is either unstable when
extended downwards\ or the two!phase zone terminates
at the stability boundary at a pressure PG and saturation
SG computed from equations "01�# and "02�# ^ below this
is single!phase vapour[ For still greater permeabilities the
trajectory is con_ned entirely to D W Q3 corresponding
to the high enthalpy class "12�c# de_ned in Part 0[ The
relevant permeability limit is computed from equation
"8�# with s � 9 �w\ and in the present example has the
value k � 7[90 md[ For permeabilities greater than this
the pressure trajectories are qualitatively similar to those
of Fig[ 1�"ii# in ð0Ł[

Also shown in Figs 1"ii# and "iii# are some pressure
contours "dotted lines#[ Comparing with Fig[ 3�\ all the
contours still emanate from the origin\ but they are no
longer straight lines[ This is because the interaction term
i in equation "8�# is now non!zero[ The distorting e}ect
of conduction bends these rays around to intersect the w!
axis[ Note that some of the pressure contours intersect
the vapour boundary Bs[ In Fig[ 1"iii# the detail of the 3
md trajectory near the origin has the same general charac!
ter as the 9[3 md trajectory[ The close spacing of the
pressure contours here implies that there is rapid pressure
change along the trajectory very close to the ~owplane
origin[ Thus the saturation along this trajectory is close
to vapour residual except for very high pressures[

Permeability contrasts ] _xed magnitude\ varying depth[

Now consider the e}ect of a rapid permeability change\
e[g[ an increase downward[ We take as a typical trajectory
the 9[93 md curve in Fig[ 1"iii#[ At a given depth there is
a rapid increase in permeability\ and the ~owstate moves
along a dotted line pressure contour towards the origin[
The diagram shows contours passing through "a#\ "b#\ "c#
corresponding to permeability changes at pressures of 79\
099\ 004 bars\ respectively[ In Fig[ 1"iii# the pressure
trajectories labelled k � 9[93\ 3 md are the values "L#\
"H# used in the simulation\ see Fig[ 0[

The pressure of P � 79 bars is nearly that at the phase
boundary near z � 49 m in Fig[ 0[ Thus the state tra!
jectory implied by Fig[ 0"i# enters the Fig[ 1"iii# ~owplane
diagram at the intersection of the 79 bar contour with
the 3 md pressure trajectory ðnear "x#Ł[ It travels only a
very short distance along this trajectory in the direction
of "y#[ The state trajectories corresponding to Figs 0"ii#Ð
"iv# all enter the ~owplane at the intersection of the 79
bar contour with the 9[93 md pressure trajectory ðat "a#Ł[

Saturations here are close to liquid residual[ The state for
Fig[ 0"ii# follows the 9[93 md trajectory to the point "b#
on the 099 bar contour ^ here the state jumps along the
pressure contour until it encounters the 3 md pressure
curve near "x# ^ as in Fig[ 0"i# it then travels down this
trajectory a short distance[ The complete state trajectory
is "abxy#[ Note that trajectories corresponding to Figs
0"i# and "ii# will eventually intersect the ~owplane bound!
ary G[ They are numerically stable at 0199 m\ but may
not remain so at greater depths[ If stability is maintained
then the transition to single!phase vapour will occur close
to the critical point at PG � 119[55 bars and at the liquid
saturation SG � 9[3674 "computed from equations "8�#
and "01�##[

The state trajectory for Fig[ 0"iii# begins in the same
way as for Fig[ 0"ii#[ The permeability discontinuity is
now somewhat deeper\ at about 004 bars[ However\ the
004 bar pressure contour in Fig[ 0"iii# di}ers in a vital
way from the 099 bar contour\ namely it crosses the s!
axis below the dry point S"9\ −0# and so exits from the
~owplane at the point "s0# on the vapour boundary Bs[
This explains the fundamental di}erence in character
between Fig[ 0"ii# and Fig[ 0"iii#[ The state trajectory for
this example is "acs0#\ followed by a single!phase vapour
leg[ The trajectory is always stable[ For Fig[ 0"iv# the
permeability discontinuity is below the phase boundary
so the path is "as1# with a smooth transition to single!
phase vapour at the liquid residual saturation "point s1#[

Permeability contrasts ] _xed depth\ varying magnitude[

The e}ect on saturation of a rapid permeability change
is summarized in Fig[ 1"iv#[ The permeability k9"P# at the
minimum of each P � const[ curve S � S"k# is easily
obtained from equations "8�# and "02�#[ For k × k9 the
liquid saturation increases with increasing permeability\
while for k ³ k9 the saturation decreases with increasing
permeability[ This is demonstrated by the 49 bar curve
in Fig[ 1"iv#[

However\ more complicated con_gurations are poss!
ible[ Figure 2 shows a series of numerical simulations
involving a permeability contrast at a _xed depth\ but of
varying magnitude[ For convenience we have imposed a
49 bar pressure at the top of the model[ The permeability
contrast at 894 m depth then has an associated pressure
of approximately 014 bars[ This time we consider a per!
meability decrease[ Figures 2"i#Ð"v# show the character
of the response is highly dependent on the magnitude of
the decrease[

The saturation pro_le above the permeability contrast
is represented by the k � 9[3 md pressure trajectory
shown in Fig[ 1"iii#[ The e}ect of the permeability
decrease is represented by motion along the 014 bar con!
tour which is shown as a dotted line in Figs 1"i#Ð"iii#\ see
also Fig[ 1"iv#[

For a decrease in permeability from 9[3 to 9[97 md and
the motion is from "9# to "i# in Fig[ 1"iii#\ and the satu!
ration decreases accordingly[ After this the 9[97 md
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Fig[ 2[ Simulated saturation pro_les including a permeability contrast "a decrease# at _xed depth "vertical dashed line# but of varying magnitude[ The vertical dotted line in Fig[ 2"iv#
indicates the location of the critical point[
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pressure trajectory is followed until it intersects the stab!
ility boundary at about SG � 9[14\ PG � 023 bars[ This is
in agreement with Fig[ 2"i# which shows a stable tran!
sition to single!phase vapour at about this pressure and
saturation[ This C � 9 transition is similar to the heatpipe
example in Fig[ 2�"i# of ð0Ł[

For a permeability decrease to 9[93 md the ~owstate is
translated to the point "ii# on the P � 014 bar contour
"Fig[ 1"iii##[ Since this lies o} the ~owplane in the fourth
quadrant\ the only possible transition is to single!phase
vapour "Fig[ 2"ii##[ However\ if the permeability is
decreased still further\ to 9[90 md corresponding to Fig[
2"iii#\ the contour is followed back onto the third quad!
rant of the ~owplane\ at "iii# in Figs 1"i#Ð"iii#[ The satu!
ration now decreases with increasing permeability as is
shown by the P � 014 bar line in Fig[ 1"iv#[ After the
permeability change the state trajectory follows the
k � 9[90 md trajectory "shown in Figs 1"i# and "ii## until
it intersects the vapour boundary Bs[ At this point "s2#
there is a smooth "TS# transition to single!phase vapour[

A permeability decrease from 9[3Ð9[9914 md produces
the saturation pro_le shown in Fig[ 2"iv#[ The cor!
responding state trajectory passes through the point "iv#
in Fig[ 1"i#[ This induces a saturation increase across the
discontinuity relative to the initial value "9#\ see Fig[ 1"iv#[
After the permeability change the k � 9[9914 md pressure
trajectory is followed "towards s3# with a very rapid
change in saturation for high pressures "near the critical
value#[ This becomes more pronounced as the watershed
permeability kws � 9[991045 md is approached "Fig[ 1"i##[
Finally if the downside permeability is less than the liquid
boundary value "kwb"P# � JMnwg:"JE−hwJM¦rw`g# �
9[99122 md in this case# then there is a jump to single!
phase liquid conditions[ This is shown in Fig[ 1"i# for the
k � 9[991 md trajectory passing through the point "v#\
and the corresponding numerical simulation is given in
Fig[ 2"v#[ Further complications arise if the pressure con!
tour intersects the watershed trajectory "which in this
case it will do for P × 032[9045 bars#\ but we leave this
as an exercise to the reader[

The P � 014 bar curve in Fig[ 1"iv# provides a sum!
mary of these permeability:saturation changes[ The role
of conduction "or more precisely the interaction function
i"P# de_ned in equation "8�## is evident in the left branch
of the kÐS curves[ For k ³ k9 we can say that the two!
phase ~ow is conduction!dominated\ while for k × k9 it
is convection!dominated[ Note that the P � 014 bar
curve is not always reversible[ In the simulation example
Fig[ 2 the direction was from right to left "high per!
meability to low#[ If however the motion is in the opposite
direction\ i[e[ a permeability increase "corresponding to
the example in Fig[ 0#\ then the right branch of the curve
is not accessible from the left[ The reason for this is to
be found in the di}erent roles played by the stability
boundary G and the vapour boundary Bs in the ~owplane
geometry[ The latter is a true boundary to the ~owplane ]

only single!phase states can exist on a trajectory which
leaves C through Bs[ In contrast G is not a true bound!
ary\ it merely separates the stable states "for our boundary
conditions ] on C # from the unstable ones "on C¦#[ Thus\
a trajectory which leaves C through G does not necess!
arily leave the ~owplane\ and Fig[ 2"iii#Ð"v# provides
numerical evidence of this[

3[ Vapour!dominated reservoirs

Figure 0"iii#\ represented by the path "acs0# in Fig[ 1"iii#\
is our prototype of a vapour!dominated reservoir[ The
necessary conditions for its existence are that the caprock
formation L must be su.ciently tight and su.ciently
deep[ More precisely\ the caprock permeability k and
the pressure P at the junction between the caprock and
aquifer must satisfy

k ³ kd\ P × Pd "4#

where kd\ Pd are the drypoint permeability and pressure\
respectively\ see equation "2#[ The aquifer permeability
is not constrained in this model since any permeability
increase with depth will augment the vapour content of
the reservoir "compare with Part I where a permeability
increase always leads to an increase in the reservoir liquid
content#[ For the path "acs0# the permeability increase
induces a jump to single!phase vapour\ but a jump to
drier two!phase conditions is also possible "see Fig[ 1"iv##[

Ingebritsen and Sorey ð3Ł have used a series of numeri!
cal experiments to study the formation of vapour!domi!
nated zones in geothermal reservoirs[ Their simulation
models are all two!dimensional\ so direct comparison
with the present theory is not possible[ Our interest is in
trying to determine which aspects of the two!dimensional
simulations can be related to "are explained by# the one!
dimensional theory\ and which are essentially new
phenomena[

Figure 3"i# shows pressure and saturation pro_les for
one of Ingebritsen and Sorey|s examples[ The aquifer
permeability is kh � 099 md and the caprock permeability
is kl"1# � 9[94 md[ The selection of a suitable "JE\ JM\ K#
is somewhat arbitrary[ A mass ~ow of 1 kg s−0 of 209>C
liquid is injected at the base of the model\ and there is in
addition a conductive energy ~ux of around 0[42 W m−1

which enters the reservoir through this boundary[ How!
ever the mass ~ow through the base is not uniformly
distributed\ and there are additional lateral mass and
energy ~ows which enter or leave the central reservoir at
depth[ In order to _x the equivalent one!dimensional
~uxes we have therefore chosen the mass and energy
values at the top of the vapour!dominated zone[ For an
area of 5 km1 the mass ~ux is taken as JM � −9[56×09−5

kg s−0 m−1 and the energy ~ux is about JE � −1[03 W
m−1[ Conductivity is K � 0[56 W m−0 K−0[

Figure 3"ii# shows ~owplane pressure trajectories and
contours for this example corresponding to the pressure
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Fig[ 3[ "i# Reproduced from Ingebritsen and Sorey ð3Ł[ Part A de_nes kl"0# and kl"1# and shows the location of the pressure and saturation pro_les in part B[ "ii# The ~ow diagram
appropriate to a one!dimensional approximation of the two!dimensional simulation example ð3Ł[ The state trajectory "xabs# matches aspects of the saturation and pressure pro_les in
Fig[ 3"i#[
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and saturation pro_les given in Fig[ 3"i#[ The following
sequence demonstrates the correspondence ]

"0# Two!phase conditions _rst develop above the cap!
rock structure at 199 m\ point "x# on the 099 md
pressure trajectory in Fig[ 3"ii#[

"1# then there is a rapid decrease in saturation at the
upper boundary of the caprock[ This occurs at abut
19 bars in Fig[ 3"i#\ so the ~owplane representation
of the permeability discontinuity is the segment "xa#
of the 19 bar pressure contour in Fig[ 3"ii#[

"2# After this there is a further decline in saturation
through the caprock structure\ see Fig[ 3"i#\ until the
lower caprock boundary is encountered at about 39
bars[ In the ~owplane "Fig[ 3"ii## this is represented by
the segment "ab# of the 9[94 md pressure trajectory[

"3# At the lower boundary there is a further step decrease
in saturation "Fig[ 3"i##[ The ~ow!plane represents
this as the segment "bs# of the 39 bar pressure
contour[ The _nal state "s# in Fig[ 3"ii# is single!phase
vapour[

The ~owplane picture based on one!dimensional theory
is thus in broad qualitative agreement with the simulated
pressure and saturation pro_les derived from the two!
dimensional numerical model[ In particular\ the numeri!
cal model "Fig[ 3"i## shows a step saturation decrease for
both a permeability decrease "at the top of the caprock
layer# and a permeability increase "at the bottom of the
caprock layer#[ This would be di.cult to explain without
the understanding provided by the ~owplane theory[

However there is no dry!out to single!phase vapour in
the simulation Fig[ 3"i# "although the saturation is close
to liquid residual Srw � 9[2#\ and conditions are liquid!
dominated at depth[ This is partly because of lateral
in~ow which produces wetter conditions at depth[ Run
0A in Fig[ 3"i# demonstrates that if the lateral per!
meability kl"0# is reduced then the vapour!dominated
zone extends towards the base of the model "Ingebritsen
and Sorey state that if the lateral barriers were completely
impermeable\ then the vapour!dominated zone {{would
tend to keep growing inde_nitely||#[ Another factor may
be that the simulations have been halted at 09 999 years
and have not been run to steady!state[ We have found
that one!dimensional simulations on a similar scale
require 29 999 years or more to reach steady!state\ and
the dry!out to single!phase vapour occurred towards the
end[ Thus it is conceivable that dry!out may actually take
place with a longer simulation time[ A third factor may
be that Ingebritsen and Sorey|s simulations used Corey
relative permeabilities which do not satisfy the normality
condition equation "0�# assumed "for convenience# in this
paper[

Ingebritsen and Sorey suggest criteria for the devel!
opment of a vapour!dominated zone\ based on their
simulation examples ] the requirements are that the cap!

rock permeability should be su.ciently low "less than
9[0 md#\ and that the aquifer permeability should be
su.ciently high "greater than 0 md#[ Our results for one!
dimensional systems show that the caprock permeability
must satisfy k ³ kd\ where the dry!point permeability kd

is de_ned in terms of the steady!state parameters JE\ JM

and the conductivity K[ For the parameters chosen we
_nd kd ¼ 9[0 md\ identical with Ingebritsen and Sorey|s
value[ In addition\ however\ we require that the pressure
at the caprock:aquifer interface satisfy P × Pd where Pd

"¼ 18 bars# is the dry!point pressure ] hence the caprock
structure must be su.ciently deep to permit vapour to
persist at depth[ Ingebritsen and Sorey do not identify
this as a major factor in their study[ Conversely\ the value
of the aquifer permeability does not appear to be an
important factor in our work[

Ingebritsen and Sorey have noted the importance of
conductive heat~ow in their examples[ Only when the
ratio of conductive to convective heat input is su.ciently
large "about 01 ] 0 in their study# will vapour!dominated
conditions develop[ This places an upper limit on the
mass ~ow "about 1 kg s−0#[ In our one!dimensional theory
we have also emphasized the vital importance of con!
duction for the formation of vapour!dominated reser!
voirs[ Ingebritsen and Sorey|s condition appears to be
similar to our requirement that the reservoir be of high
enthalpy type\ equation "3a# ] if the mass ~ow in this
equation refers to a _xed enthalpy ~uid at the base of
the reservoir then the excess energy must be transported
conductively[ Ignoring the gravitational term in equa!
tion "3a# we _nd that this equation implies −JM ³
−JEK:"hc−hw#\ where JEK is the conductive energy ~ow
and hw is the enthalpy of the "liquid# in~ow[ For Inge!
britsen and Sorey|s examples JEK ¼ 09 MW and hw � 0[3
MJ kg−0[ Hence we need =JM= ³ 03 kg s−0 for the reservoir
to be of high enthalpy type[ For =JM= near 03 kg s−0 we
will get a very limited range of vapour!dominated state
trajectories[ As =JM= decreases this range will expand[
Ingebritsen and Sorey|s value of 1 kg s−0 is speci_c to the
examples in their paper[

Ingebritsen and Sorey|s paper also gives examples of
vapour!dominated conditions which evolve for zero mass
in~ow[ In one!dimension we have shown that if the net
mass ~ux is zero "a heat!pipe# and geothermal boundary
conditions operate\ then the state trajectory cannot rep!
resent a vapour!dominated reservoir with a caprock[
However there is no contradiction here because the net
mass ~ux in Ingebritsen and Sorey|s example will be non!
zero in the vapour!dominated region "there will be a net
mass up~ow#[ Hence the example is not a heatpipe in the
formal sense[

Overall there appear to be many points of agreement
between Ingebritsen and Sorey|s two!dimensional simu!
lations and the present one!dimensional theory[ Further
work is needed to make the connection more precise[ In
particular it would be worth looking for vapour!domi!
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nated zones in multi!dimensional models which suddenly
disappear when the caprock permeability is increased
beyond a certain value\ or when the caprock is moved
upwards past a certain minimum depth[ We also rec!
ommend that all such models be extended vertically until
single!phase conditions are encountered at depth[ If
instabilities are encountered in the steady!state simu!
lations this fact should be noted[

4[ Summary and conclusions

In this paper we have described a method for the study
of one!dimensional "vertical# steady!state geothermal
~ows[ The method is primarily graphical and leads to a
general characterization of all such ~ows\ subject to the
restrictions set out in the Introduction to Part I ð0Ł[ In
particular it is always assumed that pressure "and usually
temperature# control are maintained at ground surface
"geothermal boundary conditions#\ and that the system
is {bottom!heated|[

Our results show that there is a natural division of
one!dimensional two!phase geothermal models into {low
enthalpy| and {high enthalpy| types based on the steady!
state values of mass and energy ~ow\ and on conductivity[
Low enthalpy systems have the property that they can
only terminate in single!phase liquid at depth[ High
enthalpy systems can terminate in either single!phase
liquid "for low permeabilities#\ or they may be unstable
"for high permeabilities#\ or they may terminate in single!
phase vapour "for high and intermediate permeabilities#[

A suggested prototype of a vapour!dominated res!
ervoir involves a permeability increase "caprock over
aquifer#[ The necessary conditions are that the system
is of high enthalpy type\ and that the caprock is both
su.ciently tight and su.ciently deep[ Vapour!dominated
models of this kind always terminate in single!phase
vapour[

The role of conduction is seen to be essential for the
formation of the vapour!dominated reservoir[ More gen!
erally we have shown that\ in the absence of conduction\
a permeability increase "with depth# acts to increase the
liquid saturation[ The same conclusion holds for a heat!
pipe "zero net mass ~ow# with conduction[ Only for a
non!zero net mass ~ow combined with conduction is it
possible for a permeability increase to give rise to a
decrease in liquid saturation[ It is this kind of behaviour
which permits the construction of the prototype vapour!
dominated reservoir model[

The theory also shows that reservoir models "and pre!
sumably real!world reservoirs# can respond in a non!
uniform manner to changes in their parameters[ In fact
an in_nitesimal change to certain critical parameters can
bring about a dramatic global change in the reservoir\ e[g[
a change from liquid!dominated to vapour!dominated
conditions[

We have shown the utility of the ~owplane diagram

in the study of one!dimensional steady!state two!phase
hydrothermal ~ows in a heterogeneous porous medium[
The connection between permeability and saturation has
not been clear in the past\ and some errors of fact have
arisen[ Hopefully\ by examining this problem in its natu!
ral context\ that of the ~owplane\ some of the confusion
surrounding it will be dispelled[

In this paper the ~owplane is labelled by the steady!
state mass and energy ~ow "and by the conductivity#[
These are also the quantities which are constant in the
natural state of a geothermal _eld[ Thus the ~owplane
diagram may become a useful tool for the reservoir engin!
eer in pro_ling the _eld in its natural state[ Some aspects
of multi!dimensional vapour!dominated reservoir simu!
lations may be usefully described in terms of the present
theory[
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